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ABSTRAC

This ...~~p presen'ts an exposition of the subject of
truncated sequential tests. Although the main Intent of this
ropart ld. tutorial ifl nature, soine previously unpublished
re3ults have Lee.~. included.

Special emphasis has been given to the following topics:V
a) t~he practical necessity for truncatLon, b) the effects of
truncat io .n o n . the performance of the tqst, c;' t-tae ra~ult6 of-

computer simulations and d) rules oftruncation and application

to principles of design.
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EVALU*ATIOI:

This report is part of a series of tutorial monographs on var iour

topics on system theory and information processing. The p'-rpose Of th,

series is to bring to the attenticn of electronic equipment dczi.,

inform-tfor re-toin - from recent rca rch 01;zu , i:._1%tutz> L. _-:

suitable for applications. The work was sponsored by the L.abcrtutor>

Directors Discrectionary fund, undez Task DI 6h-2.

Sequential testc in electronic detection, have been consider'0u :or

application to optimal detection problems (See for example RADC TDR 60-70A

Applications of Decision Theory to Electronic Equipmcnt." Today, com, cr"

those ideas have been applied to the design of practical, though stpii-

ticated, radar -q-.ipments. "hough a sequential detector is superior irn

performance than it'r non-sequential counterpart, it is more complicate'd

to impliment. It is only through understanding of principles, and tth:f

availability of perforwmnce calculations that one can det.!rmine if the

Extra sophistication justifies it in any particular application.

Though this report. is primarily tutorial in nature, it does contain

some previously unpublished results. The preparation of t.ais report vas

motivated by the following conditions:

a) Expository material on the subject from an engineering point, of

view is sparse, though a chapter is inc)dded in the books, "Detection

Theory" by Ivan Selin, and more recently""Signal Detection Theory" by

Hancock and Wintz.

b) There are contributions from the engineering detection problem

that are of %ise to statiit#cians,

It is hoped that the future will2 oon bring forth a rather full

treatise in book form on this fascinating subject from an engineering

poivt of v0 ew1

Pro1 ev. Engineer



INTRODUCT ION1

The applicaticl of sequential t.ýRts to radar proble~m
originated some ten years ago At SIGNATZON. we have studied-
exter~sively various tzvvncatad saguei'tiax. teste. T'he current
m~nnograiph is based tun ta- results of a number of tbeae studies.

Altflough the present. niograph is intended to be tutorial
i. nature, it at.ý- conta~xis some new previously unpublished

thismatrial Th
Teato aepriualgrtflto the:: Air Force.

Corporation 4*bicb was published by the k.ND Corpon4-ýton.4_



1. S3QUENTIAL TE$TS AND RADAR DETECTIONi

:.' I The application of statistical tests of hypotheseN to the

radar daetection problem is by nuw a well-known approach. As

result the practitioners cf this field have developed a habit

of intermingling the statistical language with the engineering

one. The statistician, examining those of our writings on the

subject that are concerned with engineering applications, fre-

quently will fail tu perceive the significant statistical con-

Lrlbutiort which may be contai.,d in them. On the other ha

the design engineer who wishes to extract significant infor-

mation for his system will tend to be equally puzzled by the
statistical terms and may fail to recognize the practical sig-

nificmnce of the analytical results.

In o-der to overcome these difficulties this section of

the monograph discusses the semantic equivalences of the engi-
j !• neeriag and statistical nomenclature used in onsat follows. This

effort at translation, as if it were, should help to make the

material of this monograph more accessible to workers in both

fields, Moreover, it may also help to encourage the engineers

to av'ail themselves of other material on sequential topics and

vice versa.

The problem of deciding whether a target is present or

absfttt can be regarded as a statistical test of two alternate

hypotheses. Thus the design of the target detection system is

the design of a statistical test. Th1ne obsecved variablt-' a aar

the received pulses. The detector is the device which con-

structs the test t4 atistic. The test statistic is the function
• .... 7, f observed variables, whic•i is used to make decisions and is

represented by the voltage at the output of the detector. The

'ete Procedure i- the lcgic of operations on the received signal

Wbhich ,.hve to 1qe perfrmtned. The inequalities which have to be

e-amined to reach a decision are tested by comparing the voltages

ot t,•e output of the det-ctor to suitable threshold voltages.

The action following the decision that the target ts present is

-4Ai-
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an "alarm". Trho ~acticun following the 4ocisicon th~t too target
is absent is a "dismissal". The probability a of accspt~ig the

altrnae 'ypothesis, Hi ("target~presentl"), when the null o

is te pobailiy o fase aarm Siilalytheprobability
P faccepting the null hypothesis H ("target absent") when0'
tealternate hypothesis H, (',target present") is true is the

probability of error of the sec~ond kind. in the radar context

thin probability is the-probability of false dismissal. If -

is the probabi.'.ity of telse dismissal then 1 - is the prob-
ability of detection, i *e., the probability of declar-ing target
present when it indeed is present. The number of obvervations
required to complete the test is known as the sample number and
is, in~ effect. the number of radar pulses which must be re-
ceived -from the target to complete the detection process.

f ~Since radaz pulses are usually emitted at a uniform rate,*..

-the, n~umber of p~lses to complete the detection pr-ocess is
di..,ectli proportional to the time required to complete the teot

- ~an& the notiorn of time and number of observations to complete ';

the test are interchangeable. Since a likelihood ratio test
on independnt samples involves a gum of logaritisus vf likeli-
houds of indil'idual observations the physical realization of a
likelihood ratio detector involves an integrator. For a fixed
aampl@ size test, Li~ke a Neyman-Pearson test, this integrator
La a fixed time constant. For sequential tests the time con-
stbnrt is variable.

3
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2. SBQMMTIA TXSTS OF STATISTICAL H[YR2THRSCS

A sequential test is a statistical test of hypotheses Wbere
the amount of data which is examined is not specified in advance;
the number of observations which are taken is a random variable.

Such a procedure has the virtue that on the average the number
of observations required is smaller than the fixed number of
observations required in the fixed-sample procedure yielding

the same probabilities of error. That is, with fixed-somple

size hypothesis testing procedures, the number of observations
to be taken is determined in advance and is a function of the

probability of errors wxicbh will be tolerated. This fixed

number of observations is then taken after which the value of

the test statistic is computed and compared against a single

threshold. One of the two hypotheses is accepted depending

whether the test statistic does or does not exceed the threshold.

A sequential test, on the other hand, is performed by

establishing two thresholds and successively taking observations
until the test statistic which ia recomputed with each new
observation, exceeds the upper threshold or falls below the

lower threshold. On the average, a sequential test which yields

the same error probabilities will require fewer observations

than the fixed sample procedure. Conversely, if the number of

observations of the fixed sample procedure were chosen equal

to the average number of observations of the sequential pro-

cedure, either one or both of the error probabilities of the

sequential test would be smaller than the c;rresponding errors

in the fixed aample test. Thus, either from the point of view
of the number of observations, or from that of the error prob-
abilities, the performance of the sequential procedure is

superior to that of the conver'ional fire'i &ample size test.

The sacrifice which is madi, in exchange for this improved

performance is the unpredictable number of observations re-

quired in the sequential procedure., i.e., although the average i i.



nmaber of observations can be expected to be smaller than the
wmi~oo of observations required in the fixed sau~le proc~edure,
individuael tests may reuire.L an extremely large nwuWer of
observations relative to the average. In factt samil test so~
continue unresolved f or such an extended period of time that
tUs demand may arise that the tosting procedure terminate and a
decision be made *as to the hypotbosis which ahould be accepted.
It tos a recognition of tbin fact that leads us to a study of
truncated sequential tests.

S



3. REVIEW OF RESULTS FOR UNTRUNCATED TESTS

The theory of sequential probability ratio tests (SPRT) as
developed by Wald is presented in Ref. 2. In this section we

do not develop the theory but present those general aspects of
sequential analysis which will be necessary for P consideration

of truncated sequential tests (TST).

Let us assume that we are interested in testing the null
hypothesis H that the value of the parameter a In the prob-
ability density function of a random variable x, p(x-;a), is
zero against the alternative hypothesis H that the vdlue of
the parameter is a,. Aceýordinq to the SPRT procedure, suc-
cessive observations on the random vaiiable x are made ,nd after
m observations (m=1,2,...) the logarithm of the likelihood ratio

plx11 ,x2...Xm -Pa 1 )•:
Zm =n .(3.1)

is computed and compared against two parallel thresholds (or
boundaries) lnA and lIB. In statistical terminology Zm is the
relevant test statistic. I- Zm > lnA, the procedure is tetwi-

nated by making decision d to accept hypothesis H1 ; if Zm <

InB, the procedure is terminated by making decision do to accept

hypothesis He0 otherwise (when lnB<Zm <lnA) another observation

xI-+ is taken and the testing prccedure continues..

It can be shown that, neglecting excess over the boundaries,*
the probability a of Type I error, i.e., rejecting H0 when
a = 0, and the probability R of Type II error, i.e., accepting

HC wbin a=a 1 are given respectively by

AAS-

*,*excess over the boundaries" is the amount by which the value of
at termination stage n exceeds the boundary, i.e., Z!in

or lnB-Zn.

:s
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Thus in order to construct a test with performance (a, O) we

dhoobe the thresholds Inh tnd In), where

A - (1-01/4 and B = 0/(1--) (3.3)

A pictorial ropresentatlon of the testing procedure is

Oiven in Fig. 3-1. It will be noticed that the region of

m>O, is separated into three partz: accept Ho, accept H1 , and

continue testing.

In what follovw, we assume that all observations are in-

dependent so that

PlxI' 2x ... ,Xm;a) = U P(xi;a) (3.4)

and hence

* zm =5 i n=l,...,n (35,

i=1

where

P(x ;a1K

z In= (3.ý6)L

We adopt the notation trmt n is a terminal stage of the standard

8PRT and thus, neglecting the excess over the bourdaries, Z n

Is the test statistic for a ccupleted sample.

Since, In zadr problems a is, in general, w,,, 44 .ith

the signal-to-noise ratio0 for the sake of simplicity and

clarity in reference to error& of Type I and II we will us.

bare t%-* radar at-qin.riw. terams "false alarm" pro~ability -

for the probability of Type I error and "false dismissal"

7
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CONTINUE K
TESTING~\ \

ACCEPT H0:aa

FIG. 3-1 PICTORIAL REPRESENTATIoU, OF SEQU§#NTIAL DTCI-
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Aa.

probabilitiv for the probabilitty of Type 11 error.

An 1zmportz.-nt quantity in a sequential test is tbe avera.g*

samiple number (A=) , whiclit it, 4-b numbs*. %A' U-"-*vatt~c~n9 ne~ded

on the average to arrive at a decision. The ASH is a Alunctim,
of the true value of the paraumeter it, and for independent samples

is given by

wh~ere L(a) is called the operating characteristic function (OC?)

and is the probability of accepting bypotbesis H0 given th~at A

is the t::uo value of tbse parameter under tost and where Ez(a)

is theo expected value of z given Pi

* Bz~a E~lnp(x;a)

Fromu the definition of a and ~,it is ovii~ent that L(O) 1--

and L(a) S . Therefore, a feelirgq f or the overall performance

of a sequential test can be obtained sim~ply by examining the

OCF and ASN of the test.

It in a property of secrenttal testai that no other staltis-
tical test of hypothesis H~ against H can be constructed with
a smaller average saimple number., and yield as small an a anid0

as a sequential test, Conversely no othev tost Cara achieve a
smaller and B and also requi're on the average loee observa-

tions than the sequential test.6 ~1



4. PRATICA NWECSSITY FOR TMMThCTION

Although a proo,&. by Stein' provides asaurarxee that the

sGecuntial tests will-'terminate with probability 1, it 1ia deer

ýthat aame tests may last longer than; can be tolerated. The

test lenqth is a random variable an.4 long tests wil.l occasionally

occur even ubhen the parameter a wbich is under test equals zroz
or exceeds the nominal valuo a. due to the 'non-sero variance

of tree tost !.engt-., rurtberzaor*, when the SM~ Wbich actually

occurs has an intermodiote value 0 :ýa < a,, the resulting ASK~

because itself very large thsereby indieat ing that even~, on the

%verage, the test May take MUCh longer than if j is exactly 01

or a. This last point can be undurstood by referring to
Fig.4-1 which illustrates typical AMU'*. It follows that

there will be occasions when the testing must be prematurely

terminated and a d.,cision reached on the basis of the alis..adly

available data. 1
Wqhen situations arise when these very long tests can not

~.'tolorat*d# It becoimes noeasairl to modify the toot procedure

in oi~to accelerate the termination of the tdL.*_. Sometinex

it is evot no.:nssary to modify the test oc that one can

qijarantee that the toot will torminate prior to some specifiedI

Mhenecessity of ttrneatizn i,: especially evident in

practical e~in~iraing problems -Awhre thb urgency to termirate

the testing procedure may increase with every cý3cedLn saaiple.
An e~xamuple cf sicn a CitUati~on Is given by radar %ietoction

Wbore a Ohanqapg on one partice.ular tarqpet may a1.tow .-tzewx.r
gets to Pass by Undetected or. may cauver a decreass Df ava*.able-

zrad~r reopoenso time,

This uzqtncy c-an-be stated in terms o0 F a. norhnear -in-

eroasing cost lipsociated witi successive samples. AccordlngV

toVWh C~t fmtoasucodi, mVtsbeom s10tl

t __at____________________ ,________________rapidly__thereby_________
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demandi on the experimenter tco edad the testing. Several ffiethc4s
Of a::ce1erat~n9 Or terminatinq tb, testing are presented in the
next cection.

4 41



5. RULES FOR TRUNCATION

There are several ways in which an accolerated or truncated

sequentizl test can be constructed.

One way to achieve the desired change in the test procedure
is to :nodify the parallel test boundaries shown in Fig. L-l to

curve and meet at stage N. The stage N is calJed the truncation

staqe and the modified test a truncated test. Two manners of

modIfying the boundary deserve special attention. In the first
c•ase, no change in the test procedure is introduced until the

truncation stage itself. In the other case the boundaries can be

brought closer together with every stage to monotonically converge.

In the former case, the truncation may be said to be abrupt and in
the latter case gradual. It is, of course, also possible to let

the boundaries asymptotically converge at infinity, guaranteeing

t-at the test will accelerate but not necessarily terminate by a

particular stage. Figure 5-1 illustrates some of the different
ways tcf modifying the boundaries. When the boundaries do in fact

meet at the truncation stage N, we specify at that stage only one

rather than two thresholds so that there is no "defer-decision"

region at that stage and the test must terminate.

It can be observed that from this point of view the paral)el
boiindariet' if the Wald test are a consequence of the uniform

cost of additional observations independent of the stage number.

On the other hand, the converging boundaries can be interpreted

e a consequence of an ever increasing cost of additional obser-
vations so that the cost per observation is a non-linear monotoni-

cally increasing function of the stage number. The abrupt

truncation becomes required when the cost of an additional obser-

vation becomes infinite.

When sequenttal tests are used in the context of a signal

detection problem, it is sometimes possible that the circum~stance-

o- the problem permit the observer to control the energy of

successive pulses. S,-ppose that the energy of successive pulses

is gradually increased. Since the energy of Puccessive pulses

can be thought of as the cost of teking observations, the situation

13



in whicA the boundriem remain pirallel but the energy increases

itceauivalernt to the situation in Which the energy of successive

puse remains the samne but tnhe boundariws convarge. The proce-

Sure, based on gradually increasing the energy of successive

pu1~s impliea feedback from the receiver to the transmitter

carrying information wbother or not the test has or has not yet

terminated.

Modifications of t'ýe~ test procedure need not, of course, be

restricted to tti ýjradually converging boundaries, (or gradually

increasing energy). It ts possible, depending on the particular

situation ':hat the formuliation of the problem 'Leads to a multi-

stage test Lf statis-ticai bypotheser which does not entail

monotonically converging boundaries (or increasing ene-rgy) but

introduces more c-mplicated boundary shapes. Samne examples lead-
ing to such boundary sbapea aj~e discusesd later in this section.
Other tc'pics relating to the modified sequential tests which are

di..~cuased include the analysis of performance of the modified[

tests and tests with variable energy.I

tA
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6. POTXNOMLI& APPROX IMAT ION ToMTI E

A "equontial test wit%.h 'trapezoidal, 1s1opinq boundaries bas

bean analyzed by Anderson5 in the case-of a random variable wbich

is a Wicner process. More generally, we can~ _,onaider a class of

, yý sequential test procedures tasat entail-monootonically converging

boundaries. A test procedure of this type can be called gradually

truncated. A difficulty arises in the treatment of gradually

truncated sequential tests in that the boundaries are themseelves

a function of the sample sz, w4hicr. is a random variable. In

_this section, we outline a mnethod for obtaining approximately -the

.- 4 Average Sample ?Wumber and the probability of accepting an alter-

nate Irypotbesis. our presentation Is based on Bussgan4 and

2 Marcus)

2
Following Wald' consider the sequential test cr a sequence

X =(x1 1 X2 ,. of discrete random variables. We assume that

a3soci~ted with the hypotheses H.6 and 11are the two 41ternate

probability density functions p,(Xm) and pl(X ) which govern theI
observatlions in the sam~ple. The modified sequential test is per-

formed as follows: with eacb new observation added to the sample,

the likelihood rati.o pj(X)V/p,(X,) is formedI. The process is

continued as long as

2 and ceases at- some stage n as soon as one side of tre inequalies

(6.1) is violated. The modification of the test con.Cýst,, o f t ?,a

fact that the bouxnddries are not constant.s h. a functirmo of m.

For the sakt of clarity, the termi.Tinl stage is denoted by r, as

distinouished from an ari~itrary stago m-;~ the totryirnati"fl

waedepends on the run of the s*f.-p1lo, n is a raaMCca variablo.

i Let he ionof 1ýhe laoer inequa'l 1tv be associate~d 1rwiti t~e

acetaz of H0 and. the voioatior4 o tn w~~ Anqa~ wt

tha acceptance of H. Suppooe trie runct;ýn 1. (M is iorotonleal1iy

-~~ -----



non-decreasing and trie function f (m) is monotonically non-
increasing. Truncation occurs for the smallest value of m, N,
St.-Whtich f (N) .5(N) since at that stage the invquality (6.1)
must be violated. 'rotice that if the two Tbypotbieses were *qually
likely and the costs of accepting incorrect decis ions were equal,
thena it would be reasonable to require that at truncation

f0(=f 1 (N)=O.

Let ERf(n)ld $H )be the e~pectation of t~w function f of
the i:erxinal itage n given that the test terminates in the deci-
sion d to accept the )sypoti-isis H and that the h¶ypothesis H is
true; i=0,1; J=Ol. ussgang and Marcus~ (p.7) have shown that,

Ee f (n)IdiIHj = P(d IH )/P(d IMj (6.2)

E[exp-f (n) Idi,Hi P(d IH)/P(diRkl) (6.3)

and hence

iE[xp f (n) Id1 H IEteip -f in)d1,H J 1 f or i/ij

(6.4)

For t'.1e case of conL-ant boundaries f ( 1)=c~onstaznt, i.e.,

f (n) lni A

be result(6.4) boc, evident. Specifically, for 1=1 4rnd frG.C

17-
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Btexp f 1(n) IdiH 0 ) (l-0)?a (6.5)

and ~E[exp -f (n)ld 1,H3 A1, (6.6)

To illustrate h~ow these equalities Can be used to evaluate

approximately the performanc~e of a sequential test considetr theI exponents specifying the boundar--as that are of the form

nr0
f 0 ( S 1 (6.7)

S and

I(n 1 rlU (6.8)

where O:Or 1 9 and iand Fare positive. The graph of f (n)

in shown in- Fig, 6-1. The graph of f (n) is 2imilar. In what

followsm assume independent observ'ations and let t~he tilda sign

d- istinguish the quantities characterizing the modified test

I fromn the corresponding quantities in the Wald test. For the
specifitn Eet of exponentiai boundaries the inequality (6.1) ther

becomans

-0 (1 1
J=l

m=l , 2,..*,n-3. N1

Tf iN a~r.3 B/N ar* small (i.e., N is large) the class tests

-18
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-; specified by (6.9) tends to the standard Wald tests witb acian A
WI and b =b -in B, We consider tbe problem of finding the approx-
imate A~SN and the prob~bilitiss of error of tbe modified test

I nd order to simplify the resulting expressions assume that

a and are sufficiently swall so that: given H t~w decision is

d most of the time; then

The following approximate expressions are obtained.

(1H E(z1H) + r Aq (611

and (+ )(6.12)
NE(z1H) +

Similar expressions apply when the null hrypothesis is true wbere

ro, b, replaces r., a, a and E(njd 0  replaces E(nld 1).

By keeping only the first moments of n, the boundaries are
A approximated by straigbt lines. We not* that, in general, as

the boundaries converge, excess over the boundaries will take

place. The approximations in (6.11) and (6.12) ignore tests
which terminate at trie truncation stage N4 and are theref ore

maeaningful only if ci-cumstances of tr* problem are sucb that
most teazts terminate prior to the truncation atage.

29~
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7. ABRUPT TRUNCATION

In this section, we discuss an abruptly truncated seue.
til roabliy atotest. Th ondre of the test remain

parlle unilthe truncation stage N. At the truncation stage

mustbe ade In he nteest f poviing xplcitresults,

the iscssio inthis Section will be specialized to apply to

thetes fr te manof a normal process. This corresponds to

coherent detection of a known signal in whuite noise.

A truncated sequential procedure is illustrated in Figure

7-1. On the vertical axis is plotted the value of the test sta-

tistic Zn, for (continuous) values of n on the horizontal axis.

For each value of n the vdlue of Z nis compared against the two

tbresholds lmA and lnB. if Zn exceeds the threshold InA before

n-ýN, the decision d is made to accept the hypothesis H if

the alueof falls belowl the threshold InB before n=m, the
decision d 0 is made to accept the hypothesis H 0 . if Z n remains

between the two thresholds up to n--N, then at this stage no

further samples are taken and the value of Z~ is compared with

he* terminal threshold x. Hypothesis H is accepted if Z n>x,Itews hypotheasis H is accepted.
The, four labeled paths in Figure 7-1. show the four possible

ways in which a detection procedure can termindte in a trL,ncated

test. Decision d 1is made when either the test statistic Zn
exceeds InA or remains within the two parallel boundaries and is

greater than the terminal. threshold x at the trunc'ation point N.

These two possibilities are shown by path (1) and (2). Decision

d8 is made whenever Z ncrosses tr*e loswer boundary ln8, or remains

irs t-oa 4`oeferred decision region until1 *-?.c 1ýas t is tr~ncatud and

the taut statistic is then below~ x. Thtese two possibilities are
sinown by paths9 (3) and (4).

' Tie mathematical $timplcity -of the expremsiso-iss (3.2) and (32",)
I-Whik~h Specify thI'e periý,rnzaince ocf &aqug-entiai1 test -ýS lost to a

large~ extent wrwei truncared s".enqi*tiai tests (mAST) are consi-

j -dered. The difflcultiea cantiý- abcut tr* tact that now we mus$t

774[~
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consider separately the outcom of tets wbic:% terminate before

truncation axd thovb thit tervinate at t.uncaticn. There is no

simple transition f the analysis of the untruncated pr.ocedure

to tre truncated case. Let the probabilities of arror of a TST

be (T and e V

A truncated *est is a comp:omise between an entirely sequen-

tial test an! a fixed test, It is an attempt to reconcile the

good feati.res of both of them: the smquential feature of exawin-
Ing observations as they accuisulate and the fixed test feature of

guaranteeinq ccpiletion within a specified sample Siz It is

cle=• that modification of the test boundaries changes buh the

probal.ilities of error and the distribution of the sample size.

For example, if in !ig. 7-1 the threshold InA and inr are set to

yield errors (a,) in the untruncated procedure, the intLvQuction

of a truncation point at n=M will decrease the ASN but increase

the values of a and/ot B. The nat effect is a loss of performance.

That is if we could adjust the thresholds of the truncated test

so that aT=a and 8T= tren t". truncated procedure would have a

larger ASN than the untruncated test. Conversely if we could

adjust the thresholds of the truncated test so that the ASN of

the truncated tet were equal to the ASN of the untruncated test

fr-r 0r*alai, then uitner or both o- and e, would be greater than

the corresponding values of the untruncated test with the u.n-

adjusted boundaries. It should be recognized that in the trun-

cated procedure the cbwice of Zhe location if the terminal

threshold x influences the values of a. anC S This in.luence

Sdecreases as the truncation staqe incroases, M•,a. 'or v-..

large vAlues of N (large in cowparison to the ASN), th" ,alIes of

and an are not sensitive tO th.e value of Y; for small values

of N -.le values ot aT Pnd 01 are very sensltivu to the pcsition

"", be ,erminal threshold A.

In a S3RT the •rrobabh-ititt zf errors a and F ate not a

function of the Parair.eter aI bit are dependent Dnly on "."

setting uf triv tresnclds 1nA ind InB. 177 AS'4, In.owever, ,.r -A- -

pender. Loich on tUe vali.v 4f a. and a. In fct if

variable under test 1J th* mean 4f a C--uss distrilbtion. the

quantity o* Interest is not ASNZ .iil_ýne b•t} aA.AS * , the

S 23
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"average ,'nergy" of the aset Alt'.,>ugb the ASN varies not only

with A b't also with A.l, tbe quantity a2ASN varies onlv with a.

In the V&d "'imple test fxthe mean of the Gaus':, distribution,
we rec&ll the error probabilities are a fur.ction of the "total

-. energy]" a nf where nf is the total (and fixed' number of samples;I
the larger a1 the smaller the value of the n,. Consequently for

tie case of a TST, a fixed value of N be:omev relatively large in

comparison with the ASN as a, incraases. The larver N is in cow-

parison with thASN, the i.ore '-oe TST resemb es a Z.RT test and

corre'pondingly a and 0T approach a and 0. Thus for a TST the

ialuu cf a influences the probabilities of error. Late, it is

shown that the perforzi•ancr parameters of a TST are in fact uni-

versal functions of t* trunrc:ation energyr in the test for the

mean of white noise.

kS stated previtu.'y . -. ay TST there will be a net lose in

the ptrformancc over tl-e n S-RT. .n fact, if we attezpt

Smaintlin T=CL a,,d B•=P• M daý%cseee, the separation between
T 1 1

thresholds inA and lr miust be increased occ-.ýrdlngly, until in the

limit InA=-, inB=--, aASN-a2 N and the ret' •itg T3T has become a

fixed sample test- At t'nis pofnt the net savings in energy of a

TS'' over a fixed sample test is, of course, zero.

7.14 Fo-lict Results for the Test tor thi Mean of Whte Nose .

In general, the expressions f&- i an- T as a function of

the boundaries are difficult to obtain. 9ouever, when tb•? loga- {
r ithff, of tN. liik•!ihood ratio cani be represented by a Wiener

proess, or tb- su- of a Wiener prcev - and a daterrnist*c f u. -

ti'n .f time, ixplicit results are availal.e fraxI• tbe work -1

T. V. Andersorn. The loarlt?= of the likeiihoAd rar- lo, ,e. the

"teSt StitIsAC cai be approxtmately represented in tnsw wy whn

the sequential tezt (SPRT) is for the •an , a nermsl variatic

o. sucessiv4ý .n;,osndent samples. 7b derlva,-tn ofC tresor

su Its Rs g1ven i•n ApperdcAx A. fewre we g've appr:,-Xý,at-ons .h

"are valid .4-r a var•e!- ,f applý-at!on-.

The vamp-lea undeý toot toll-ow t-e density '

24 .
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f(xa) 1 exp-(X1 -a) /2 (7.1)

The null nypothesis is a=O and the alternate hypothesis is a=a5o

We let t be the time variable so that, if AT is the time hatween

observations adnd m the number of observations, the elapsed tim~e then

is t=T,,/T. Let r b.e t'e truncation time so that T=NAT. For a

test represented in Fig. 7-1, we then have the following approxi-

mate •esults:

S- a " -- @ (-'. x~ , k_) ÷.. .. + zI 21.hA)
_ T A 2 a

ax alnA-DnB),,
SA 24 2 al/

I!
a, a 3 . 1 2 inA-InB),

a 4T_ a I a1Ii

and i..(7.27

ai
B .+

L.I a, VTV

Ia

- " 2~a~ Th .2)i

: I

-InA

+



Thes last two --quations-d-jmons'-rate that the probzbilities ofkerror of t'iR truncated test are univereal functions of the.
3

"truncation energy" aT. It can be determined d!rectly frotm

eqs 07 1) and (7.3) that if we let lnA=w and InB=-- tht reau)-t-

ing aquations for %T and Sr are exactly thove that express the
:LA' probabLitits of error for a fixed sample test with energy a- T

*and tl*.re,3bo.ld x, name-tv,

f 07.5)

I a-d.

From. the expressions (7.4) and (7.5) it also follows that in o-der I.-I
to achievts perform,--ace •tand lf, tbe (termrinal) tlreshoiu x must -_i•i

be Set at

X = I(O I Ix = [•2 f [-sf) (7.6) ,.:¢

and t' est mtusthave-ener-,;

F I - +=- ( 7 . 7 ) : ., -

T-Pe last-tw0 relations are the kncwn results for fixed sample

hypothesis tests.

7.2 A Truncated Seuential Test with One Thbreshcld at Ea& Stage

We see from C/.2) and 7.3,) that a. and are a universal

function of a T and depend on the tree quantities lnA, inB, and

* 2 fj
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.7. Tbeke are therefore three quantities wý ich can be adjusted,

_tco satisfy the co.ditions that Tnd T have qpecifiad values.
T T

In practical problems a third condition to uni.quely specify

those t*,ree TiantLt.'es foi" a given set (aT, 0T) must be Judi-
3ciously chosen. For example, in the case of sequential

dotection of a radar Zetirr., the probability of an echo from space

-is so smail that it is very unlikely that the test will terminate

by the test statistic Intereacting the "target present" threshold

riA. Therefore, most of the time the test lengths will be con-

trolled by the location of the lower threshold lng; the closer

tW.s tvreshold to zero, the more liiely is the test statistic to

cross it early nd the shorter the test length. Thus for any

value of aIT we can minimize the dismissal t st length by rais-
ing the lower threshold as close tu zero as possible while simul-

taneously lowering the value of x and :aising lnA in order to

S -maintain tite desired values of aT and %T Under those conditions,
the value lnA=- is the value of the uppe- t-hreshold which leads

to the smallest value of -lnB. Since no alarm could occur prior
to the termina! stage, the probability of false alarm a T "1o1ld

then be determrined solely by the terminal threshold x. Under

these circumstances only one threshold exists at any stage. For

A •such a single boundary test (Fig. 7-2) the general expressions

(7.2) and (7.3) simplify considerably and for the target-absent

and target-present caxses, we obtain:-

* an= ,.ai ( x 2and

ir a II-T ) a i- 1 +lnB

(778
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~ Furthermore, under the same condition and using eq. (8,.:) in

Appendix (B) the density of t can be shown to be

p~) -aI3/ 0B + -)B for t<T (7.10)

tolej ~ a t teta ~ o ; : t

lowering xand correspondingly raising lnE while maintaining

1nuk-m The ASN of course decreases, ieflectinq the increase in
aT. As we continue to relax our requiremýent -n r-T , and lower x,
the terminal t.-!eshold x would evenitually coincide with lnB. For

a continuous process lowering x below InB is mweaningless. Thus

even fnr this minimaum value of x, tbe resulting tes~t may have ai

value of a,. smaller than the required a. Exac~t equality could
then be achieved only by lowering the t~hreshold lnA. This jii

turn would have a tendency to further decrease the XW¶ of the teat,
but as we reintr-luce the upper threshold, the impcr' ant problem

of a non-uniqueness of threshold setting which yields the desired

* probability of error arises.

7.3 Interaction 3etween Thresholds. ASN. and Probabilitieýs of
Error

STS' of Fig. 7-1 carn be specified wrhen the three ttiresnold

A,B an~d x are given. Usually the test: requirements are stated in

terms of the probabillites of fkase alarm ani false d-s-
MIssal ).A third c~nJý.irn that c:Duld 'be set ,nl determining

the, th r et tvireshonlds which wlil result, .n a TS-7 with spec~.f ed

controls ts to require that the ASN -f theTS! 'v- a Gnm~ f

c:urse, thie ASN is a functl=r -_f o;ueof th~e parameteýr ~
adas sucTh we can require mit-mza.-ýon oýf' ASN for a p~tc1~

--f a. zor if-r I inl a spec_ý,j ranoqe, The exac'! eXpre!;s'.-_

for thee ASN - I ovfn i n _ he Appe ndL x7. Fýr '-or applitLin

racy.
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An example of the effects on a and 8 as a result of vary-_
ing the thresholds is given in Figure 7-3. In the first column.

w) number the case under consideration; in the next column we

z:consider raising (+) or lowering (-) the threm•old criven in troe
beading; the effects of this change on ttie thrasholdR are giifn

in the last section, Where "4* or "-" SignIfy a; C...

decrease in the values of mT, ST" Initially thresholds InA, InB, r
and x yield performance of aT, 8T anti ASN. The results of each

case is compared with this initial situation, For. exami.e, in
Case 1,. raising InA will decrease tne probability of false alarm; to

offset this a decrease in the terminal t-hrepbhold x will increase

OT and decrease P. The net effect on tnese probabilities of

error could be zero, but the Asti would , been increased due
to the raising of the ,.9per threzhold ir.A..

Not all possible cases are illustrated in Fig. 7-3, since in

srme cases it Ls not clear what would be the net effect on the
ASN for certain adjustments of the threshold. For example, if

mnB and inA were ".ncreased simultaneously the resulting probabi-

lity of false alarm would decrease whereas the probability of

false dismissal would increase. A lowering of the terminal thre-

shold coul-! possibly compensate for this change in the error
prýbabilities. However there is no assurance that the ASN is

uniformly larger or smaller than i:i the care before the thresholds
were adjusted. If a_ is close to zero, then the new ASN will be
Smaller than in the previous case; if a is close to al, the con-
verse is true. Thus whether the value of ASN increases or

decreases in such a case depends on the true value of the para-

meter a.

7.4 Setting the Terminal Threshold

T,: is .vident that there are it least two ways of approach-

ina the problem of truncated sequential tests. The first is to

deternune ti.c adi•istnent 3n t-ie thcee thresholds in order to

arr~ve at the desired values of and F according to some cri-

terion ,.--n the AEN. The Recond is to fix the parallel thresholds

and dtevnikne the position 2•f tbe terminal threshold in some
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Fig. 7-1 t.- Maintain Ctvcn (Tý 3T) with Result-

ing Change in ti~e ASN
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deairable way. The first problem has been considered above to

some-extent. We now consider the second problem.

Wald 2 recognized the necessity of a terminal decision in

a truncated test but was only able to give an intuitive anwor

to the question of where the threshold should be set. He felt

that "a simple and reasonable rule for truncation..." was to

set the terminal threshold at zero and accept or reject the null

hypothesis depending on whether or not the test statistic at

truncation is positive or negative. Thi.- rule L.eoms remeonable

mainly due to the fact that Wald, as tiost statisticians, tias con-

cerned with values of a end ý which are about equal, as a result

of which zero is approximately halfway between InA and InB. In

many scientific or engineering applications, however, a arid 8

may differ by several orders of magnitude. For example, in radar

sequential detection a is typically in the order of 10- to 1010
0-.1 -3

whereas 8 is typically in the order of 10 to 10 - Thus the

choice of zero for the terminal threshold in such a case will

have a tendency to disproportionally favor -.,e tLype of error over
the other, that is, if many tests are resolved at the truntion

stage, such 3 choice may nave a tendency to drastically change

the magnitude of the evcr? for which th- test was designed..

Therc is no ,,nique criterion trom wbich the value of the

terminal threshold can be determined when a parallel. boundary

test is truncated. Ideally we would want x to be chosen such

that the decision at truncation wou)d be exactly the one which

would be made had the testi.ng continued. 'Plus ideal situati-n

is unachievable for •t would imply that a TST could perform as

well as the optimum test.

One poss'ble solution is to set,

,rA + Ins)
X 2

so t 1)at t he trmina-- thr eshcld is h ytif•,a7 betwoen nhe pý-ra-104.1

thresholds 'nA and InB. -lb ue esaent al11y d recta the ex-

perimenter tý.. accept tne hyp tr.e,,is that ctresD be"
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boundary to which ZT is closest. This approximation is of course

very useful in engineering applications whiets a simplified tech-

nique '..a of greater importance than exact resulce.



8. DENSITY DISTRIBUTIONS OF TST

8.1 Total Distribution Functions

There are several density functions of the Eample size which

can be studied, several of which are related. Probably the most

important distribution is tne density of the sample size which is

not conditioned on the particular terminal decision. This dis-

tri"ution gives the density pa (n) of the number of samples n

required to terminate with either decision when a is the true

value of. the parameter. The density p a(n) is the total density

function conditional on a. It follows that the ASN of the test

is given by

A npa(n) (n (8.1)

Now if the test is truncated at n=N and the thresholds are left

unchanged, the new density function p (n;N) is unchanged up to
ai n=1, at whch point it takes the form of a delta function of

strength pN Pa(n)an" Thus we have

Ia
P a(n) + 6(n-N) [ Pa(n) dn for nIN

i• •a~n N) =(8.2)

• ,0 n>N

Sand the new ASN takes the form

ASN = dn + N dnSo

Although the sample size, n, is a discrete va-iable, the distri-
* bution of n can be approx 4mated by a continuous distribution w1hen

the expected excess over the boundaries is small and the step size
4 $ z. is small relative to lnA and llnBl.

34
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By definition, an abruptly truncated test can last no

longer than N observations, and it can be shown that on the

average, it must take less observations than the untruncated

test with the same parallel boundaries. It follows from (8.1)

and (8.3) that the difference

ASN -ASNN = f (n-N) p(n) dn (8.4)
ýN N

and is always positive, showing that ASN>ASNN. Graphically, the

density function and the distribu-ion function of the sample

number for an untruncated and a truncated test are shown in Figs

8-1 and 8-2. Several approximate expressions for pa (n) are

available; an exact expression for a Wiener process, as a func-

tion of the thresholds and the value of a is given in the

Appendix. The expressiori for the ASNN can be obtained by means

of (8.3) and is also given irn the Appendix A.3.

8.2 Conditional Distribution Functicns

Other distributions of interest are given by the condional

distributions of the sample size. These are distributions of
the sample size given that decision d is made, i=O, 1 when a

is the true value of the parameter, and will be denoted by
4

'- ,- zt can be a-,own that in the untruncated case these
a

conditional densities are related to the total density by the

express ion

p a(n) =L(a) p a(nld ) + a1-L(a)p p(nidI) (8.5)

N We firet de,:elcp thn corresponding expression for a TST, and

point out some interesting consequences. We will then find

various relationships between conditional and unconditional den-

sity functions.
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Let pa(n!d ;N) be the probability reasure of the set of

those tests w•ich lead to decision d at stage n.N when a is

the true valus of the parameter. The probability that the TST

terminates at the nth stage -with either decision given that

truncation iR at n=N, is given by

P (n;N) = ka(njd0 ;N) + p a (nldl;N) (8.6)

It is important to point out bere that p a (nldi;N) for i=Q,l

is not a function of N when n<N. That is, tests wbich have ter-

minated at n=m<N are not influenced by the value of N; only those

tests terminating at n=N are affected by the truncation stage.

Of course, at n=N, the value of the test statistic is compared

against the terminal threshold x in order to arrive at a decision.

The location of this threshold will determine Wrich tests at n=N

will declare decision di-

Now the OCF, which is the probability of accepting Ho, can

be written as

L(aN) = a 11(nld0 ;N) (8.7)

from which it follows that

n=N
1 - L(a,N) = i.±a(nld1 ;N) (8.8)

n= 1

These expressionm can be wri, ton in the combined form
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L (a,4 N L:-? aN)) 4 (nN L~~ldi, 1) J =0,

where we define L 1(aN) as tre prob~bllity of accepting rpte

gig H for a test truncated at n=V. Also, the conditional
probability function p (nI'.N) can be written as

(p n l l;N) - I�dV (nid N)(8.10)
& n=N"

I~(n~d ;N)
n=~1

This is the probability that the TST will terminate at stage n
givera t rt.t "be decibion 4.ý d4 and that a. is the true value of

tthe paiametc-r.
I' is also impotant to point out. here that alt.ough p (nId ;N)

* is independent of N fur iI\, pa(nld,;Z;, is dependent on the value
F tor n<N, wlas for P=N; L(a&N) ox courscf is also de-

penden. mn e a r

Usinij (8.7), (8,8), "A (8.10) with i=O., nd i=l in (8.6) weI get

(Pan;N) -L(a,u) p (n',to;14) 4[I-LliaN)] pa(nid,;N) 0.11)

usr t,'e Lswi tw, c&ea of intereet we can w'ite (3.11) as

k 'I

ro n = -ar) P0n, noVN p i-4 d N) (8, 12 a)

for. sig:al a,;zent,•
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and. f or signal prasent,

P1 (n;N) F r Ppr~'doiN) + (1-B.)p(Od;)T8.2)-

Thus ve have arrived at the-analogue, of (j-S5) for TýT andf to the

ifteresting cqonclusion that although each of tr-e tv~q f ac ::ovs In

*.ch term or, the right-hand side of (8.11) varies with the value

of N, 0 atbl term,(or the product of these two factorui) ij indepen-

dent-of N for n<N.

Once we have the probability function of the. sample tize-of
an tantruncated'test conditiuna.1 on the decial'n di being made, we
ma te wish to determine the corresponding conditional probabi-

lity functions of a TrST.

jLet us assume, then, that we are given p5 (n~di the condi-

tional density of the sample size n for an untruncated sequential

procedure wlien a is the true value of the parameter given that

-dis i=011. is the decision made. We wish to determine P~nld,-;N)
for n!N, where N in the truncation stage.

Using the same notation ae above we havu that the measure of

those teats which terminate with 6,cision d, at stage ni in the

untruncated procedure~ is

I~(n~di p (ntd) Li(a) (8.13)

wbere I~. a) ~ ý (dl) i.s the piotibility of making decision d
wben v' j tine valtie of tNo parameter. In the truncated procs-

du~e te orrersponlin-a relat.-onsbip is given by (8.9) *Mare

tn!ýn. ;N)=" (n tid, when n<N; and fur n=N:

(JNid ON) L L(aft) - i( d4 ;N)
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or

Now,- using (8,9) ind (8 wo cap~ wrIe

or- substituting for ,t (n d~;) * e

Laa

1-L(a N-1

k 1

As exampie3 of this laist expreuhion we con write, for signoi W4Al

PO (n ld1;N) T-(8,7)

O1-T k=3 pt~2 =

Ond for signal present,

Pi(njd ;N)(8

I ki I



We can make certain observations at this point: It is not

sufficient to know Pa(nidi) in order to obtain pa(nldi;N);

cartai•ly the value of L (a) and L (a&N) are needed. However,
taN can be easily tabulated as a function of V in contrast

tc Pa(nIdi;N). Thus we have reduced the problem of determining
values of pa(nld 1 ;N) as a function of n and N to the simpler

problem of tabulating L(atN) as a function of N and using (8.17)
to obtain the desired distribution function of the xamplo asiz.
In perticular, if the desired quantities are to be obtained from

4*tperlmental results then Li(a,N) can be easily obtained for
*eih Value of N in the ("-urse of dstermining Pa(nldi) and Li(a).

The quantity pl(ntdi;N), on the other band can not be obtained
directly because of the dependenco of Pa (n di;N) on N for s

n<V, as was noted earlier. Thus, it is not practical to tabulate

Pafntdi;N) for several values of N4 even though the expression
could be calculated at each stage of the sequential prcedure.

.-11w expression (8. 17) developed above is recommended when selected
values of pa (nidi;N) are desired.

The relationships between the various conditional and uncon-
ditional distributions for TST can be obtained by starting with

-ow known relationship. and the ones derived in the preceding
section, A saummary ot these relationships is offered in Table 1.

Some of the expressions are equivalent although presented in
different form. These are listed in order to facilitate their use

depending on a user's individual need.

Certain comments can be made with regard to the expressions

given in Table 1.,

(a) The introduction of a truncation stage N implies

the use of a terminal threshold x which determines

the decision to be made at this stage. Thug quan-

tities such as a and 0 are in fact--a function ofT T
tr& terminal threshold alth•ough its functional do-

pendence has not been explicitly indicated.

(b) The Theorem of Bussgang-Marcus wbzch establishes the

equality between the density functions given ma (3)

of Table I does not hold tor t'e case of TST.' 6 Thee.
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latter expressions are civen in ( f) of Table I.

(c) 7.-e expression po(nid 0 ;N) in (6) depends un N ,n, y

through a,. Similar staternents hold for >bolhe~

den'nity functions in (6) of Table 1,

(d) Since. for example, aTP_(nld, d-es not de.pend
cn N for n<N we can w•-ite

am Po(nldl;N) = po(n;dl) n-N

(e) For continuous testing in a pmocesN* with in(ep---n-

dent increments we would rcplace thne iuuwantions )f

or i 1--y t.ne integrals F dt.
k:ý! 0



TABLE1

SUM ARY OF RELATIONSHIPS

P,( n) p (n ld ) + (1 -0) p ~ ~ i

2o ni ) fl (r l ;W) + CL p a N

= P(nI%;N9) + (1-0 )p,(nld1;,N)

Po(rtd)0 p (rtld) *Theorem of Buasgsng-aru

)P (nld) p jflia
0 11

~ I (1-8)p,(n) - Lp ~i)) 0(l) ==p(nld)

I14p 1Iln) -po~n)

P (nld1)( )) v(rldd

a -p,,(n d) < N

4 ~ ~~ p0 nd 1 N g)Nip(k 
id) n N

T k=l

P(nld ' 1 ;p 1  kI.

1 ~N-1
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p (nid n < N

p1)(nId ;N)N-

0 0 .

N- i n N-

OTk

e~-)pi(nd) - <L N~ri

F ~ p1(njdId;)=
~(1-p) p(k d) - N 1 k
T1=

c(-_p (n) p (n)

p(ni ;N)
0 0J

N-1 N-i
Q~-a) p(k) p (k)1p0(k1_ Po k -Ir=

f~~P (i~(n) p,(i (n-)8

Pi(n d.s it)

=p~ (k) -(-) k
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i)1o(nIT)s

1-E POWk
kal

I~ <'

P, ( 0 T) Tp 0 r~ 1 w) '

p0(n (k T1 TA(n

IlT P(rtn)d (-e%+.L Po(raldpb;. n<

= Oy(N IN) hN

kP n~) ) fn N

I1p (kid)
n Np 'iji 1N

09

4' 1<



Pi(ni%) n'

Plj Id0 ;N) N

N-1

EP,(nId)
1-Pj(niN

k= 1 n < N
1p(Idj797)

N

p, (n d

l~cLTp (rid ;N)

BT 1 - N p Idot~

p1  (n d ; N)

1 -Pp`Nid 1 N)
n N

44a

AI



9. COMPUTAR SIULATION EXPEP.LTATION

The previous analysis applies to sequontial detection on

a continuous process Where the problem of excess over the

"boundary does not arise. In practice observations are taken

at discrete instances of time. Such a sampling procedure will

generally cause the value of tre test statistic to exceed t *e

boundaries, thereby over-deciding on the hypothesis indicated.

s Thus a fraction of the last observation would have been buffi-

cient to arrive at the same decision. Such fractional steps or

observations are clearly impossible in a discrete sampling

process. As - result cf this the discrete test lasts longer

than if the sampling were done continuously. The co.pensating

effect is that the tese. statistic exceeding the boundary over-

decides, thereby indicating the decision with a smaller prob-

ability of error thdn would have been obtained had the test

statistics Just toLubed the boundary. Consequently for a dis-I crete test the boundaries can be set closer to zero to obtain

the same performance (a. Q) as in the corresponding continuous

test. Both of these factors must be simultaneously considered

to obtain a valid measure of the effect of discrete sampling on

the'performance of the test.

In order to study the performance ot discrete tests, the

procedure of sequential testing was simulattd on a digital

computer ard the pertinent test parameters and distributions

were tabulated. Bef-re we present and discuss the results out

the computer analysis, we present a description of the simula-

tion piccedure.

For purposes of computer experimentation a more generdl

procedure than that given by (3.5) can be studied. Tn part ita•a' la-

we consider a Gaussian procj:ýs: with an unknown mean, bur w , re

t~.e .7np ýs are -correlated, The, praces5 under stud,., is the

first order Markoff or "RC noise" , where the _orre-

*lation between~ the f nrd J observatiron ia T ?r tost

Stat*st'c r ! "s" Case can Le •btalned from tne l'ikelihood

If415

S+A

A, . . .+ ++



ratio (3.1). ft* result is 7

(, a-l 12,21 X a

b'st fhrae been ted reurec re+ti

X k a +n k(93

where nk, representing the random cc~Aponent, 's a Gaussian

random variable having zero mean and unit variance a4d where j

represents the true value of the parameter. On the first step

x a + n Correspondingly we have

Iz a1 lX. - 21

On the second and succeeding steps the additive noise is formed

from the expression

n w, - + n i P I-• -' 0o, 4)

whbe w is a random n=Z-. r_-• the same distributic.- as n-

an4 , -is the Coe rlfti ot correlation, It can "asily

r :ldd that t.e tocorrea. ...... '! -i n 7l e

the block diagram of tof -w 3pie at~ z'O of ttoe det•ctor r*-

nreente•d yq. (9.1).
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I
In runfl'rg comlput%.r expetirrtitts for sequntPial tests, it is

best to intentionally cr.oose reasonably large va]lipa of the

probabilities of false alarm and detection in order that the

sample size (and tknereby computer runnirg time) be within

reasonable limits. It is important to observe that if a and A

are small the proportion of trials ending in the incqrrect de-

cision will be correspondingly small and it will be difficult
to compile enough data to achieve stable and reliable results

about system performance. By virtue of the Busagang-Marcus

theorem it is possible, however, to study experL~.entally the

conditional density of the s3mple size of the tests terminating

in the more "popular" bypothesis and deduce from &; the con-

ditional density of the sample size of tests terminating in the

otner hypothesis. In Fig. 9-2 we show the result of 40,000

experiments. It is clear that with signal absent and a = 0.01

most events terminate at the lower boundary and among 40,000

experiments only some 400 will terminate at the upper boundary
Whicb is insufficient to provide a stable picture of p0 (nld

0j
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~xp rn;3 sa rIr for t-A$ S i: f (adrC ~or a TS~ (A a3 -r (1

a. r •, qre cuilte in-volved and d fficult J. intep u.. t n otp er

Sgai.n in. sht into the interrelationsh-,ip of thDse "xpresrk-.z,

qzapn.cal result:3 obtained by computer evaluation ot tne6-, ex-

re .. ion- Eire presented in Figs. 101 throuqh 10-9 or
ulected values of the parameters, Figures 10-I and 10-2

oh.ri th- ASN ar- a function of the ratio a/la for various vl,ues

of the truncition parazneter i I'. T.*ne uppermost curye labelid
a. T-::giv the ASN for an untruncated test and the values of
"a and F 3n--wn, w icb determine t,.m, fixed boundaries f r all t e
tests, are tor the untruncated case. The resulting values cL

T,, and RT for ri = 0.01 and P = 0.1 can be obtained. from 1icT. 10--?

3ince at a=0, G•CF = i-m and a 0al, OC? = A. The complete per-
formance of the test can thus be obtainerl by examining the two
Figures 19-1 and 10-3 1"--,r example, if we truncate at

= 5 tben 0 ..06 P 0.27 with aeASS = 4.4 wien a/a ,=0.
T I T 1 A1

Several coimnents can be made from Figures 10-1 and 10-2;

0,o valu e of a RASNP as is expected, never exceeds the value a
but is very close to it when a2 T is small since rnzny tests -re

then resolved only at truncation.

Also, wo would expect, when r.<P (i.e., ,nA > lnBI), that
2 2as a1 T increases, the value of &/aI for wb ch AS is a maxixcux

would decrease. Tl:t is, for small a T we would expect the
drift of the Wiener process to req'iire a larger positive slope
to yield tne maximum ASN than When a2T is relatively large. This

e xpectation is borne out by the figures, from which it is clear
that as 1 *r increases, the value of a/at for which a ASN is a

m aximum decreases,

On closer examination we would expect that, When <B<, the

maximum value of a ASN occur for that value of a/a 1 for Which
the Wiener process has drifted slightly above the point

2%2
2¾1lnA2 + lnB) at the truncation stage a T. That the maximum

should occur for a value of a/a1 for which the expected value
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J of tho tobc Stitistlc it s'wewbat larger than a pr.int midway

between t"e thresnolds at the truncatn Point sfrc

j the fact that for small values of t, E(Z(i-)) is very close t i

* th] lower ti• 3shold as a result of which tre tests would tend

to terminate early unless the Wiener process drifted away fro-m

this at-orbing boundary. Th.e requirement that the process

drift above the point '(InA+lnB) at t=7T to yield a matximig,

I ASN when a<$ can be stated equivalently in terms of the ratio

a/a,. Thus, we want II
E(Z(T)) > I(nA + mnB)

wbici, from (A.4) leads to the inequality

nA f lnEa/a 1 >(6 + _ (10.1)
a T

The results in Figs. _0-1 and 40-2 Show that the value of a/a 1

for Which a ASN is a naximnum does indeed satisfy irequallty
*(10.1).

In Figure 10-4 is shown the probability density of the *&=plie

size for aial=0 tnd a/a 1 =I. The decision thresholds were set by

a=0.0l and •=.1. These curves, calcula'.ed for the test-In of

tne drift of a --ontinuous Wiener process chould be corcpare,.. with
the corresponding curves for the discrete detection procedure

given by Piqure 10-5. The similarity of the shape of the curves

on tmbc last two figures 4z #vidatnt. The =ain difference lies
,, •.nat-. . a a& . " _ . d.'o, ed to terminate tho discrete de-

tectioA procodur. is larger tmn in the continuous case# Sa As

to be .- p~cted becijuse in tie cr15 of continuous procedure som
onozqy is lOSt In the excess over the bound-ri"e. As diocumss

in section 8 these denshties hold for TST up to the trvueotion
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we~re StrowTn with thf- teriuriain th~tshW.;d bet a, ~

dimini~shing effect as the truncation stage increases. Thiki

infuene -f the t.erminal threshold can be studies also in
Fig. 10-7. Further ins~ight iLnto relationships betwesen the dif-

ferent quev! ritxe, o~f tne TSr can oe obtained from Figs, 11-8

and 10-9 In which ASN is plotted as a functi=n vf the truncation
energy a T.
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APPENDIX A

EXPRESSIONS FOR T.-ie ASN, OCF, AND DISTRIBUTION FUNCTIONS

OF A TRUNCATED SEQUENTYAL TEST

A.! Introduction

In this Appendix we give exact expressions for the operatinu

cnaracteristic function, average sample number and distribution

functions arising in sequentially testing for the mean of a

Gaussian distribution. As in trhe main body of this report, we

are interested in testing the hypothesis HO that the mean of the

distribution is a = 0 against the alternative hypochesis [-, that

a=a 1 >0. ihe samples Xiused in arriving at the decision have a

Gaussian distribution with mean a and unit variance. Thus th.,

density runr.u7on ot the samples is given by

2
(X.i-a) 2

f(X1 ,a) e (A.1)-2T,

The test statistic at the ntb stage Is given by

n
Zn= Z zk (A.2)

k= 1

where zk is obtained from the k sample >k by means of logarittrn

of the likelihood ratio

2£

zk In O aF) 2 (l.3)

1 i
r
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2
an,2 where the expected value of z, is E(z = a = 2 - 2a).

The test statistic Zn is compared abginst two parallel

thresholds inA = In 1 and inB = in such that decision d
a 10

to 3ccept 1o is made if Zn < inB, wheroea decision d1 to accept

HiI is made if Zn > InA. The testing procedure continues as long

as tnB < Zn < inA. If at stage n=N no decision has been reached,
hypotbesis H 1 is accepted if ZN >_ x, and H0 is accepted if ZN<x.

It is very difficult to determine the exact values of

the operating character:stic function and average sample number

of a sequential test as specified above. This difficulty is due

mainly to the fact the test will not in general terminate with

Zn equal exactly to inA or to InB. In general Zn will, exceed

these boundari-9, and it is the effect ct this excesr which is

uZficult to ana)yze.

In orrIer to avoid the difficulties of excess )ver the
boundary when the test statistic is discrete, we replace Zn by

a continuous test statistic Z(t) on which the tt-e procedure

is followed as in the discta-e case. We are, then, testing

for the drift of a Wiener -rocess. This beinq the case, we havo

2
a 2a
2 a1

Erz(t) - g(z(t))1 2 = a~t (A.5)
A.

2 2and termination time T in place of E Z =Prm, E[Z(t)-E(Z(t))] =a.Im

"aand termination time N.
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A.2 The Operating C"haracteristic Function

In a continuous sequential test the probability of false

7,larm will be exactly a and the probability of false dismissal

will be exactly R, when the test is untruncated. In fact, the

OCF and ASN for such a test can be written dowrn directly. In

the truncated case for a continuous sequential test, the situation

is somewbht involved. The GCF is the probability that hypothesis

HO is accepted. This is the probability that Z(t) touches the

boundary lnB before touching ln., plus the probability that Z(t)

lies between the boundaries for t<T and Z(T)<x. The expression

for the general case of non-parallel boundaries is given by5
Anderson. For our case we nave

OCF[ (rc-lnA) =2Arc-lnA)

a:: 1 I

-ehrc -( - 2 rc -he11(rc+lnB) (y- 2(rc+lnB)-e Iy -/T"- a -e Jy-

+ -rc Y- 2rcj (A.6)

where

A = (1-p)/Ci, B = P/(1-a), b = (1-2 a)
a1

y = X + f and c lnA lnB,
al j-" 2

and where the function #(z) is given by
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z t 2

O(z) __ e- -2 dt (A.7)

--

It can be easily checked from Eqn. (A.6) that for T =

1 - OCI0a=0 and P = OCFIa=a,"

The approximations for aT and 8T given in Section 7 of

the main body of this report are obtained from the general

expression of the OCF given above.

A.3 The Average Sample Number

Foxr the same truncated continuous sequential test as

described above, the ASN is given by

2 ASN (ASN) 1 + (ASN) 0 + (a• T)P (A.8)

wh re

2 -rrc+InAJ A _ A 2rc + InA)
(A N I '4"[a 2 a1Af

r2 -aI aJ

_ [e-h¢r+1ac 4€ bA- _ (r4-1,,lA

-b(rc-lnB) a I (2(r+l)c l-njl 2 (r+

-nd (ASN) is obtainsd "ben inA and -inB are interchanged and

b in replaced by -b in (A.9). That is
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(ASN(lIA, lnF3, ri) (ASN(-lnB, -mnA, b-

Also P ri1 (P1I + P)0 where

lhA
'P• 2 _

aa

~rhc ai I (2rc-lnA))

a FT2 F1 F

and F 0 is obtained from. P1 with the sam~e substitutions as pre-

scribed for (ASN)

It is not a difficult r-atter to check from Eqn. (A.8) thtj-

Wnen Tr

a22 1 i(1-c)lnB + am~A]

and

a2
2 a1  a=a. B lnB 4(1-8) mnA

Thece are the~ well-.knrr,,-. expressions for the ASN for an untrun-

cated test.
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A.4 The Densityfunction of Lhe Sample Size

Again, for the same test which led to the expressions (A.6)

for the OCF and (A.e) for the ASI3, we get that the ptubabil~ty

density p(t) of the test length t is given by

p(t) = p (t) + Po(t) (A.I1)

Where 2rc_7 2rc +nA

4•_ld+ a aIt(
p1 (t) 3 _ (3/2 2 F j(2rc + lnA)e

a3t rt- rzo

2(r+jc (rc-lnB)

a2
- (2c(r+I)°inA) e at(A.22)

ani po(t) is obtained from p.(t) by interchanging InA with -inB

and replacing h by -h. The function O(x) -, given by

2
x

0(x) = -- e

t

ive funrctio pi(t) is such trtat P P' 1 _ I is the proba-

•ility -nat decsxorf di is made before time t. The expression

P (t) is of course the same as giver by Eqn. (A.!.), and has tie

property that P,(-) + P1 (-) = 1. Also, for exAwpl, P.,(--)
ban a-.! and wn a .



APPENDIX. B

APPROXIMATIONS TO THE DENSITY7 FUNCTION OF

THE SAMPLE SIZE OF SEQUENTIAL TESTS

En the case of a seqrential test for the mean of a Gaussian

process, the exact expression for the density funLntion p(t) of

the sample size of an untraincated test can be obtained. This is

equivalent to the distribution of. the first passage time for a

random walk with two parallel abrorbing barriers. The exact

expression is given by Eq. (A-I1).

P(•" = '(t) + ::.o(t) (B.1)

where
2 r__ (rc + riA)a (hZT {n A )a!•t

pi(t) = -2-3/ + t n A F i (2rc + tnA)e

2~ (ýe` 2
-(alt) 2al 1 •=-C-

at2 - (rc - nB')

-(2c(r+l) - tnA)e f

and p,(t) is obtained fruc p (t) by interchanging tnA with -tnB and

replazing h by -h, In this expresslc:. for the density functio.n:

C .nB,

h _ 2¾

a r rue signal-to-noý# :;_t4

aI prow, signal-to-nols rot io

0(x) =.x 'ep- x2/a2/ I;•
67,



For most purposes an approxLnate expreision is adequate.

Pne such expression ceat be obtained by congiderina the first

term of the infinite sum w¢hich appears in the exact expression.

Thus we have that the probability density frunctiDn p(t) of the

test length t (or first passag•e time) Car be opprox:Unated by

2c

_"t)- (2c- CnA)B a h t . _
t2 t)3/2 2

--5-

+ (-trE - (2c 'nglA ha t nB

(a t. alv t

If the test procceed3 bi discrete saripli!Lg the approximrate jd.f.

of the terminal stage n is obtained by repiacing t with n.

A further si•rpllft.cation is poss-ble if we also assixte that ýn

(.2) _2-0 and I > 9. The approxlrate expression for the pd.r.

thern becxnej

,' 23-

where

a3

-d .. .

• m •i@i •



-he f:&ression.3)chezks after suitable Pubstitutions, WaldIs 2

tformula (A.183, p.193).I A further approximaticn is posible it (4.fnA)/c' is large,

i.e. if many steps are needed to reach the bounA. The distribution

L "f t gLven by(B.3) approaches then the Gausaian distribution about

its rmean

4 "1 32/ t 2
Se (8.4)

I(2TT.,nA I AI

with only the lower boundary is represented by B>0 and A infinite.

The expressi~ns appropriate to this case can be obtained simply

by replactig -,nA by-tnB wherever tnA Pppears in (B.3) and (B.4).

Another useful approximation applies to the case A=!/B [see

i Bussgang and Middleton4 (7.741, (7.75)1

We note alse that if z is the logarithm of the probability I-

ratio of a test with independent samples but is not a normal

variable, then the p~d.f. of the sample size for B=0, A>0 can still -
be approximated byB.3)where u and cý are now Ez and Var z.

'I I ?/
I
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